Subject independent EEG-based BCI decoding
نویسندگان
چکیده
In the quest to make Brain Computer Interfacing (BCI) more usable, dry electrodes have emerged that get rid of the initial 30 minutes required for placing an electrode cap. Another time consuming step is the required individualized adaptation to the BCI user, which involves another 30 minutes calibration for assessing a subject’s brain signature. In this paper we aim to also remove this calibration proceedure from BCI setup time by means of machine learning. In particular, we harvest a large database of EEG BCI motor imagination recordings (83 subjects) for constructing a library of subject-specific spatio-temporal filters and derive a subject independent BCI classifier. Our offline results indicate that BCI-naı̈ve users could start real-time BCI use with no prior calibration at only a very moderate performance loss.
منابع مشابه
Simulation Experiment of BCI Based on Imagined Speech EEG Decoding
Brain Computer Interface (BCI) can help patients of neuromuscular diseases restore parts of the movement and communication abilities that they have lost. Most of BCIs rely on mapping brain activities to device instructions, but limited number of brain activities decides the limited abilities of BCIs. To deal with the problem of limited ablility of BCI, this paper verified the feasibility of con...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملQuantitative EEG-Based Brain-Computer Interface
The brain-computer interface (BCI) is a direct (nonmuscular) communication channel between the brain and the external world that makes possible the use of neural prostheses and human augmentation. BCI interprets brain signals, such as neural spikes and cortical and scalp EEGs in an online fashion. In this chapter, BCIs based on two types of oscillatory EEG, the steady-state visual evoked potent...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملPredicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters
Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO fra...
متن کامل